Roll over eggs…it’s time for (unrolled) tobacco leaves

Tobacco leaf infected with Tobacco Mosaic Virus. Courtesy of Clemson University - USDA Cooperative Extension Slide Series

Timeline, 2008: If you’ve ever been asked about allergy to egg products before receiving a flu vaccine, you have had a little encounter with the facts of vaccine making. Flu viruses to produce the vaccine are painstakingly grown in chicken eggs because eggs make perfect little incubators for the bugs.

So…many…eggs

There are problems—in addition to the allergy issue—that arise with this approach. First of all, growing viruses for a million vaccine doses usually means using a million fertilized, 11-day-old eggs. For the entire population of the United States, 300 million eggs would be required. Second, the process requires months of preparation, meaning a slow turnaround time for vaccines against a fast-moving, fast-changing disease. Last, if there is anything wrong with the eggs themselves, such as contamination, the whole process is a waste and crucial vaccines are lost.

The day may come when we can forget about eggs and turn to leaves. Plants can contract viral disease just like animals do. In fact, an oft-used virus in some research fields is the tobacco mosaic virus, which, as its name implies, infects tobacco plants. It gives a patchy look to the leaves of infected plants, and researchers use this feature to determine whether the virus has taken hold.

Bitter little avatars of evil used for good?

Tobacco plants themselves, bitter little avatars of evil for their role in the health-related effects of smoking, serve a useful purpose in genetic research and have now enhanced their approval ratings for their potential in vaccine production. Plants have caught the eye of vaccine researchers for quite a while because they’re cheaper and easier to work with than animal incubators. Using plants for quick-turnaround vaccine production has been a goal, but a few problems have hindered progress.

To use a plant to make a protein to make a vaccine, researchers must first get the gene for the protein into the plant. Previous techniques involved tedious and time-consuming processes for inserting the gene into the plant genome. Then, clock ticking, there was the wait for the plant to grow and make the protein. Add in the Byzantine process of obtaining federal approval to use a genetically modified plant, and you’ve got the opposite of “rapid” on your hands.

One solution to this problem would simply be to get the gene into the plant cell cytoplasm for immediate use. It’s possible but involves meticulously injecting a solution with the gene sequence into each leaf. Once the gene solution is in, the plant will transcribe it—copy it into mRNA—in the cell cytoplasm and then build the desired protein based on the mRNA code. But there has been no way to take hand injection to the large-scale production of proteins, including for vaccines.

Age-old vacuum suction =  high-tech high-throughput

To solve this problem, researchers turned to one of our oldest technologies: vacuum suction. They grew tobacco plants to maturity and then clipped off the leaves, which they submerged in a solution. The solution was spiked with a nasty bug, Agrobacterium tumefaciens, a pathogen responsible for the growth of galls, or tumors, on plants. Anyone working in agriculture fears this bacterium, a known destroyer of grapes, pitted fruit trees, and nut trees. But it does have one useful feature for this kind of work: It can insert bits of its DNA into plant cells. The researchers tricked A. tumefaciens into inserting another bit of DNA instead, the code for the protein they wanted to make.

To get the solution close to the cells, the investigators had to get past air bubbles, and that’s where the vacuum came in. They placed the submerged leaves into a vacuum chamber and flipped a switch, and the activated chamber sucked all the air out of the leaves. When the vacuum was turned off, the solution flowed into the now-empty chambers of the leaf, allowing the A. tumefaciens-spiked solution to bathe the plant cells. After 4 days and a few basic protein-extraction steps, the research team had its protein batch. According to the team lead, “any protein” could be made using this process, opening up almost unlimited possibilities and applications for this approach.

Vaccines…or combating bioterrorism?

The technology has come far enough that a US company has taken steps toward manufacturing vaccines using tobacco leaves.  And it appears that the applications go beyond vaccines, as one news story has noted…the tobacco plants might also be used to produce antidotes to common agents of bioterrorism.

Polio vaccine-related polio

Polio virus bits in vaccine rarely join forces with other viruses, become infectious

[Note: some of the links in this piece are to New England Journal of Medicine papers. NEJM does not make its content freely available, so unfortunately, unless you have academic or other access, you’d have to pay per view to read the information. I fervently support a world in which scientific data and information are freely available, but…money is money.]

Worldwide, billions of polio vaccine doses have been administered, stopping a disease scourge that before the vaccine killed people–mostly children–by the thousands in a horrible, suffocating death (see “A brief history of polio and its effects,” below). The polio vaccination campaign has been enormously successful, coming close to the edge of eradicating wild-type polio.

But, as with any huge success, there have been clear negatives. In a few countries–15, to be exact–there have been 14 outbreaks of polio that researchers have traced to the vaccines themselves.  The total number of such cases as of 2009 was 383. The viral pieces in the vaccine–designed to attract an immune response without causing disease–occasionally recombine with other viruses to form an active version of the pathogen. Some kinds of viruses–flu viruses come to mind–can be notoriously tricky and agile that way.

Existing vaccine can prevent vaccine-related polio

Odd as it sounds, the existing vaccines can help prevent the spread of this vaccine-related form of polio. The recombined vaccine-related version tends to break out in populations that are underimmunized against the wild virus, as happened in Nigeria. Nigeria suspended its polio vaccination program in 2003 because rumors began to circulate that the vaccine was an anti-Muslim tactic intended to cause infertility. In 2009, the country experienced an outbreak of vaccine-derived virus, with at least 278 children affected. Experts have found that the existing vaccine can act against either the wild virus or the vaccine-derived form, both of which have equally severe effects. In other words, vaccinated children won’t get either.

Goal is eradication of virus and need for vaccine

Having come so close to total eradication before wild-type-associated cases plateaued between 1000 and 2000 annually in the 21st century, global health officials hold out the hope for two primary goals. They hope to eradicate wild-type polio transmission through a complete vaccination program, which, in turn, will keep vaccine-derived forms from spreading. Once that goal is achieved, they will have reached the final target: no more need for a polio vaccine.

As Dr. Bruce Aylward, Director of the Global Polio Eradication Initiative at WHO, noted: “These new findings suggest that if (vaccine-derived polio viruses) are allowed to circulate for a long enough time, eventually they can regain a similar capacity to spread and paralyse as wild polioviruses. This means that they should be subject to the same outbreak response measures as wild polioviruses. These results also underscore the need to eventually stop all (oral polio vaccine) use in routine immunization programmes after wild polioviruses have been eradicated, to ensure that all children are protected from all possible risks of polio in future.”

If that sounds nutty, it’s been done. Until the early 1970s, the smallpox vaccination was considered a routine vaccination. But smallpox was eradicated, and most people born after the early ’70s have never had to have the vaccine.

A brief history of polio and its effects

I bring you the following history of polio, paraphrased from information I received from a physician friend of mine who works in critical care:

The original polio virus outbreaks occurred before the modern intensive care unit had been invented and before mechanical ventilators were widely available. In 1947-1948, the polio epidemic raged through Europe and the United States, with many thousands of patients dying a horrible death due to respiratory paralysis. Slow asphyxiation is one of the worst ways to die, which is precisely why they simulate suffocation in torture methods such as water boarding. The sensation is unendurable.

In the early twentieth-century polio epidemics, they put breathing tubes down the throats of patients who were asphyxiating due to the respiratory paralysis caused by the polio virus. Because ventilators were unavailable, armies of medical students provided the mechanical respiratory assist to the patients by hand-squeezing a bag which was connected to the breathing tube, over and over and over, 16 times a minute, 24 hours each day, which drove air in and out of the patients’ lungs.  Eventually the iron lung was developed and became widely implemented to manage polio outbreaks. The iron lung subsequently gave way to the modern ventilator, which is another story.

%d bloggers like this: